Create a time series plot showing how plankton indices vary over time at different stations or bioregions. This is a simple line plot without trend analysis or aggregation.
pr_plot_TimeSeries(df, trans = "identity")A dataframe from pr_get_Indices() containing timeseries data
Transformation for the y-axis scale. Options include:
"identity" - No transformation (default)
"log10" - Log base 10 transformation (useful for abundance data)
"sqrt" - Square root transformation
"log" - Natural log transformation
Any other transformation accepted by ggplot2::scale_y_continuous()
A ggplot2 object showing the timeseries
For NRS data, values are averaged across depths if multiple depths are present (relevant for microbial data). For CPR data, bioregions are treated as "stations" for plotting purposes.
The plot uses colour and line type to distinguish between stations/bioregions. Points show individual observations, connected by lines.
pr_plot_Trends() for timeseries with trend lines,
pr_plot_Climatology() for seasonal patterns
# Plot NRS zooplankton biomass
df <- pr_get_Indices("NRS", "Zooplankton") %>%
dplyr::filter(Parameters == "Biomass_mgm3", StationCode %in% c("NSI", "PHB"))
pr_plot_TimeSeries(df)
#> Warning: Removed 6 rows containing missing values or values outside the scale range
#> (`geom_line()`).
#> Warning: Removed 13 rows containing missing values or values outside the scale range
#> (`geom_point()`).
# Use log scale for abundance data
df <- pr_get_Indices("NRS", "Phytoplankton") %>%
dplyr::filter(Parameters == "PhytoAbundance_CellsL", StationCode %in% c("MAI", "PHB"))
pr_plot_TimeSeries(df, trans = "log10")
#> Warning: Removed 6 rows containing missing values or values outside the scale range
#> (`geom_line()`).
#> Warning: Removed 17 rows containing missing values or values outside the scale range
#> (`geom_point()`).