Optional Inputs: res_spat - Spatial resolution. How many pixels (n x n) to download in each direction res_temp - What temporal averaging: 1 day (1d), 6 day (6d), 1 month(1m), ,... Monthly climatology (1mNy), Annual climatology (12mNy) Possible products to download are: dt_analysis, l2p_flags, quality_level, satellite_zenith_angle, sea_ice_fraction, sea_ice_fraction_dtime_from_sst, sea_surface_temperature, sses_bias, sses_count,sses_standard_deviation, sst_count, sst_dtime, sst_mean, sst_standard_deviation, wind_speed, wind_speed_dtime_from_sst

pr_match_GHRSST(df, pr, res_spat = 1, res_temp = "1d")

Arguments

df

dataframe containing latitude, longitude and Date

pr

products from list above, single or as a list

res_spat

Number of spatial pixels to average over

res_temp

Temporal resolution of satellite data to use

Value

df with product output attached

Examples

df <- tail(pr_get_DataLocs("CPR") %>%
        dplyr::arrange(Date), 5)
pr = c("sea_surface_temperature", "sst_count")
sstout <- pr_match_GHRSST(df, pr, res_spat = 10, res_temp = "6d")