Load and format larval fish count data from NRS biogeochemistry sampling. Data includes counts and abundance (standardised to 1000 m³) of fish larvae identified to family or species level.
pr_get_LFData()A dataframe with columns:
StationName: NRS station name
Latitude, Longitude: Sample location
TripCode: Unique voyage identifier
SampleTime_UTC, SampleTime_Local: Sampling time
Year_Local, Month_Local, Day_Local: Date components
SampleDepth_m: Maximum depth of tow
Temperature_degC, Salinity_psu: Surface environmental data
Volume_m3: Volume of water filtered (m³)
Vessel: Research vessel name
TowType: Vertical or oblique
GearMesh_um: Net mesh size (micrometres)
Bathymetry_m: Bottom depth at station
Species: Coded species name with WoRMS ID
Species2: Formatted species name for display
Count: Number of larvae in sample
Abundance_1000m3: Larvae per 1000 m³
QC_flag: Data quality flag (1-4)
Larval fish samples are collected at NRS stations using:
Vertical net tows through the water column
Various mesh sizes (typically 100-500 µm)
Sample volumes calculated from net dimensions and tow depth
Fish larvae are identified to the lowest possible taxonomic level, typically family but sometimes genus or species for distinctive forms.
The function returns data in long format with:
One row per species per sample
Raw counts and standardised abundance (per 1000 m³)
Environmental data (temperature, salinity)
Sampling metadata (mesh size, volume filtered, tow type)
The Species column contains coded names (e.g., "Acanthuridae_37437900")
combining family name and WoRMS taxonomic ID. The Species2 column provides
formatted names for display purposes.
Family names in the data typically end with "idae" (e.g., Acanthuridae for surgeonfishes, Carangidae for trevallies). Codes include:
Family name
WoRMS AphiaID (taxonomic identifier)
Life stage code (3 = larval stage)
pr_get_NRSData() for plankton data from the same stations
# Load larval fish data
dat <- pr_get_LFData()
# Check which families are most common
dat %>%
dplyr::group_by(Species) %>%
dplyr::summarise(TotalCount = sum(Count, na.rm = TRUE)) %>%
dplyr::arrange(dplyr::desc(TotalCount))
#> --- planktonr_dat Attributes ---
#> Type: Fish
#> Survey: NRS
#>
#> # A tibble: 240 × 2
#> Species TotalCount
#> <chr> <dbl>
#> 1 Myctophidae_Myctophidae_37122000 82487
#> 2 Clupeidae_Sardinops.sagax_37085002 49015
#> 3 Gonorynchidae_Gonorynchus.greyi_37141001 23047
#> 4 Carangidae_Trachurus.novaezelandiae_37337003 22892
#> 5 Bothidae_Bothidae_37460922 19145
#> 6 Carangidae_Carangidae_37337000 17071
#> 7 Labridae_Labridae_37384000 16646
#> 8 Carangidae_Pseudocaranx.georgianus_37337062 16175
#> 9 Engraulidae_Engraulis.australis_37086001 13735
#> 10 Gonostomatidae_Gonostomatidae_37106912 12542
#> # ℹ 230 more rows
# Abundance at Maria Island
dat %>%
dplyr::filter(StationName == "Maria Island",
QC_flag == 1) %>%
dplyr::group_by(Year_Local, Species2) %>%
dplyr::summarise(MeanAbundance = mean(Abundance_1000m3, na.rm = TRUE),
.groups = "drop")
#> --- planktonr_dat Attributes ---
#> Type: Fish
#> Survey: NRS
#>
#> # A tibble: 1,920 × 3
#> Year_Local Species2 MeanAbundance
#> <dbl> <chr> <dbl>
#> 1 2014 Acanthuridae: Acanthuridae (37437900) 0
#> 2 2014 Acropomatidae: Acropomatidae (37311956) 0
#> 3 2014 Acropomatidae: Synagrops spp (37311949) 0
#> 4 2014 Acropomatidae: Verilus anomalus (37311053) 0
#> 5 2014 Ambassidae: Ambassidae (37310900) 0
#> 6 2014 Ambassidae: Ambassis jacksoniensis (37310012) 0
#> 7 2014 Ambassidae: Ambassis marianus (37310018) 0
#> 8 2014 Ammodytidae: Ammodytidae (37425000) 0
#> 9 2014 Ammodytidae: Ammodytoides spp (37425901) 0
#> 10 2014 Antennariidae: Antennariidae (37210915) 0
#> # ℹ 1,910 more rows